Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ChemSusChem ; 12(3): 692-705, 2019 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-30328281

RESUMEN

Various temperature-programmed techniques were used as tools in mechanistic studies of selective catalytic reduction (SCR) of NO with ammonia in the presence of Fe-containing BEA zeolites. Moreover, FTIR studies of adsorbed NH3 and NO were conducted to determine the interactions of reactants with the catalyst surface. Iron was introduced into BEA zeolite by three different methods: i) two-step post-synthesis; ii) conventional wet impregnation; iii) ion exchange. The catalytic activity was dependent on the method used for iron introduction. The reactivities of NH3 and NO adsorbed on iron-modified zeolites obtained by impregnation and ion-exchange methods were higher than those measured for the catalyst obtained by a two-step post-synthesis method. The activity of Fe-containing zeolites in SCR was related to the form of deposited iron species, as well as to the nature, strength, and concentration of acid sites. Possible reaction pathways of NO reduction over the FeBEA zeolite catalysts were presented and discussed.

2.
Phys Chem Chem Phys ; 19(14): 9630-9640, 2017 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-28346552

RESUMEN

Even though vanadium-modified hydroxyapatite (V-HAp) samples are very promising systems for oxidative dehydrogenation of propane, the incorporation of vanadium into the hydroxyapatite framework was reported to be limited and to lead to over-stoichiometric compounds. Here, the synthesis of a Ca10(PO4)6-x(VO4)x(OH)2 stoichiometric solid solution using a co-precipitation method is monitored in the whole composition range (0 ≤ x ≤ 6) by controlling the pH of the precipitation medium, with continuous (the first series of samples) or periodic (the second series of samples) addition of NH4OH during the precipitation step or during the maturation step, respectively. It is demonstrated that the changes in pH conditions result in materials of a substantial difference in terms of the final composition. From XRD patterns and Rietveld refinements, a solid solution V-HAp phase was found to be exclusively obtained for the first series of samples for x varying from 0 to 6. This also occurred in the second series of samples but only for x lower than 4. For 4 ≤ x ≤ 5.22, the materials were composed of a mixture of V-HAp and Ca2V2O7, whereas for a x value of 6 only Ca2V2O7 was formed. The predominance of polymeric V species in solution at a high vanadium concentration deduced from the diagram of speciation of vanadium accounts for the preferential formation of Ca2V2O7 under these particular conditions. However, provided that a higher pH value was maintained, isolated VO3(OH)2- species are predominant, which accounts for the incorporation of isolated vanadates into the hydroxyapatite framework and for the well-controlled stoichiometry with Ca/(P + V) ratios found to be close to 1.67. Such a very good accommodation of vanadium in the hydroxyapatite framework is illustrated by the characterization of the local surrounding of phosphorus and vanadium species using 31P and 51V NMR, Raman and UV-vis spectroscopies.

3.
Phys Chem Chem Phys ; 18(42): 29458-29465, 2016 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-27738686

RESUMEN

Silver has been identified in the framework of AgxSiBEA zeolites (where x = 3-6 Ag wt%) by the combined use of XRD, 109Ag MAS NMR, FTIR, diffuse reflectance UV-visible, EPR and XPS spectroscopy. The incorporation of Ag ions into the framework of SiBEA zeolite has been evidenced by XRD. The consumption of OH groups as a result of their reaction with the silver precursor has been monitored by FTIR and photoluminescence spectroscopy. The changes in the silver state as a function of Ag content and thermal and hydrogen treatment at 573 K have been identified by 109Ag MAS NMR, EPR, DR UV-visible, TEM and XPS investigations. The acidity of AgSiBEA has been investigated by FTIR spectroscopy of adsorbed CO and pyridine used as probe molecules.

5.
J Phys Chem B ; 110(39): 19530-6, 2006 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-17004815

RESUMEN

The state of cobalt in two BEA zeolites was studied by XRD, TPR, and FTIR spectroscopy using CO and NO as probe molecules. One of the samples, CoAlBEA (0.4 wt % of Co), was prepared by conventional ion exchange and the other, CoSiBEA (0.7 wt % Co), by a two-step postsynthesis method involving dealuminated SiBEA zeolite. The introduction of Co into SiBEA leads to an increase of unit cell parameters of the BEA structure and to the consumption of silanol groups in vacant T-sites of the dealuminated zeolite. In contrast, no structural changes are observed after incorporation of cobalt into AlBEA by ion-exchange. The reduction temperature of cobalt in CoSiBEA zeolite (1130 K), is much higher than for CoAlBEA and indicates a strong interaction of cobalt ions with SiBEA. Low-temperature CO adsorption on CoAlBEA results in (i) H-bonded CO, (ii) Co(3+)-CO adducts (2,208 cm(-1)) and (iii) a small amount of Co(2+)-CO complexes (2,188 cm(-1)). In agreement with these results, NO adsorption leads to the appearance of (i) NO(+) (2,133 cm(-1), formed with the participation of the zeolite acidic hydroxyls), (ii) Co(3+)-NO (1932 cm(-1)), and (iii) a small amount of Co(2+)(NO)(2) dinitrosyls (nu(s) = 1,898 and nu(as) = 1,814 cm(-1)). Low-temperature CO adsorption on CoSiBEA leads to formation of two kinds of Co(2+)-CO adducts (2,185 and 2,178 cm(-1)). No Co(3+) cations are detected. In line with these results, adsorption of NO reveals the existence of two kinds of Co(2+)(NO)(2) dinitrosyls (nu(s) = 1,888 and nu(as) = 1,808 cm(-1) and nu(s) = 1,878 and nu(as) = 1,799 cm(-1), respectively).

6.
J Phys Chem B ; 109(47): 22167-74, 2005 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-16853884

RESUMEN

Vanadium was introduced in dealuminated beta zeolite by impregnation with a VIVOSO4 aqueous solution at 353 K in air or argon (to prevent oxidation of VIV), leading to VSibeta and VSibeta-Ar zeolites, respectively. The samples were characterized by spectroscopy, XRD, and N2-physisorption. The oxidation state and environment of V in Sibeta zeolite depend on the preparation parameters (i.e., on the way the solid is recovered after impregnation and on the drying temperature). In solids recovered by centrifugation, washed with distilled water, and then dried overnight at 298 K in argon, vanadium is found as extra-lattice octahedral VIV ions as evidenced by EPR. In contrast, in solids not washed but directly dried overnight at 353 K in air or argon, vanadium is found in both cases as lattice tetrahedral VV ions. These ions are incorporated into vacant T sites associated with SiOH, SiO-, oxygen vacancies (OVs) or nonbridging oxygen (NBOs) defects as shown by diffuse reflectance UV-visible, 51V MAS NMR, FT-IR, and photoluminescence. The oxidation to VV ions is suggested to be due to an electron transfer from VO2+ to trigonal identical with Si+ defect sites followed by reaction of the resulting VO2+ ions with particular defects of vacant T sites. These processes occur already upon drying of V-impregnated Sibeta at 353 K. 51V MAS NMR allows detection of one kind of lattice tetrahedral V ions in VSibeta and two kinds in VSibeta-Ar. The formation of different kinds of tetrahedral V species is related to the presence in vacant T sites of Sibeta zeolite of different types of defect sites such as trigonal identical with Si+ defect or SiOH and SiO- groups.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...